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The classical fluid dynamics boundary condition of no slip suggests that variation in the wettability of a solid
should not affect the flow of an adjacent liquid. However, experiments and molecular dynamics simulations
indicate that this is not the case. In this paper we show how flow over a solid substrate with variations of
wettability can be described in a continuum framework using the interface formation theory developed earlier.
Results demonstrate that a shear flow over a perfectly flat solid surface is disturbed by a change in its
wettability, i.e., by a change in the chemistry of the solid substrate. The magnitude of the effect is shown to be
proportional to cos �1−cos �2, where �1 and �2, are the equilibrium contact angles that a liquid-gas free surface
would form with the two chemically different parts of the solid surface.
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I. INTRODUCTION

The flow of liquids over chemically patterned surfaces is
an exciting and new area of fluid mechanics with applica-
tions in many emerging technologies �1�. Such flows are of
particular interest in microfluidics where an increasing sur-
face to volume ratio of liquids means that surface effects
become of greater significance �2�. The correct description of
the physics at liquid-solid interfaces then becomes impera-
tive to the success of any attempt to model this class of flows
�3�. It has been shown that by patterning a substrate with
hydrophilic and hydrophobic regions it is possible to confine
a liquid to a microchannel �4,5�, to improve the accuracy of
droplet deposition �6,7� or to create a structured film �8�.
Alternatively, when a wettability gradient is present, unbal-
anced surface tension forces can lead to the movement of
liquid drops �9,10�.

The effect of variable wettability of the solid substrate on
the adjacent flow has been studied theoretically using mo-
lecular dynamics simulations �11,12�. In this approach, varia-
tions in wettability are modeled by varying an interaction
potential between molecules of the solid and the fluid. The
results show that a change in wettability does affect the flow,
most notably producing a component of velocity normal to
the solid surface. Given that “wettability” can be introduced
as a macroscopic characteristic of a liquid-solid system, one
should be able to model the effects discovered by molecular
dynamics macroscopically using an appropriate formulation
in the framework of continuum mechanics.

In the continuum approximation, molecular properties of
the contacting media, as well as molecular length and time
scales, do not appear explicitly. Instead, they manifest them-
selves in the bulk equations and boundary conditions via
macroscopic transport coefficients and parameters of consti-
tutive equations. The classical no-slip boundary condition
leaves no room for incorporating the effects of variable wet-
tability and, as is well known �13,14�, it becomes inadequate
for dealing with processes of dynamic wetting where wetta-
bility of the solid plays a key role.

A generalization of no slip often cited in the literature is
the Navier slip condition �15,16�, where slip, i.e., the differ-
ence between the tangential velocities of the fluid and the
solid, is assumed to be proportional to the tangential stress
acting from the fluid on the liquid-solid interface. The coef-
ficient of proportionality is referred to as the “slip coeffi-
cient” or the “coefficient of sliding friction.” Various expres-
sions for this coefficient have been proposed �17� some of
which are based on the results of molecular dynamics simu-
lations �18�. An appropriate choice of the slip coefficient
allows one to describe situations in which the characteristic
length scales of the flow are small �e.g., nanopores�, so that
the effects of slip become apparent �19�.

The problem arises when the approach based on the
Navier slip condition is used to describe flows over solid
surfaces with variable wettability, since the existing models
provide no conceptual link between slip and wettability. In-
deed, as reviewed in Sec. 9 of �20�, in the area of dynamic
wetting, where the physics of wettability becomes a key fac-
tor, the so-called “slip models” treat the behavior of the con-
tact angle, which is the macroscopic “measure” of wettabil-
ity, and slip, which is used as a boundary condition removing
the stress singularity at the moving contact line, as com-
pletely independent. On a macroscopic level, any coupling of
a formula for the velocity dependence of the dynamic contact
angle and a slip boundary condition will produce a new slip
model. From a theoretical perspective, this arbitrariness is
clearly a weak point.

If one steps from the continuum modeling down to mo-
lecular dynamics, then all fluid properties, including wetta-
bility, will of course naturally be linked. However, to repre-
sent and interpret the results macroscopically, one will need a
set of macroscopic concepts, i.e., an appropriate macroscopic
model of the phenomenon.

Applying the no-slip or constant slip coefficient Navier
boundary condition at a solid surface implies that the flow of
a liquid will not be affected by variations in the wettability of
an adjacent solid. This is in direct conflict with the conclu-
sions of molecular dynamics simulations �11,12� that were
specifically tailored to investigate this problem. In the
present paper we consider flow over a solid surface of vari-
able wettability using a model developed earlier �21� that
incorporates wettability in the framework of continuum me-
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chanics from the following perspective. Given that dynamic
wetting is, by its very name, a process of creating a new
�fresh� liquid-solid interface �“a wetted solid surface”�, an
adequate mathematical model of dynamic wetting must have
the physics of interface formation process at its core. The
model �hereafter referred to as the interface formation
model� has been derived from first principles �21� using
methods of irreversible thermodynamics and notably it en-
sures that all aspects of wettability �contact angle, slip, ad-
sorption� are interrelated. Embedding dynamic wetting in a
general physical framework, as a particular case from a
broad class of flows with forming �disappearing� interfaces,
allows one to use the same model, without any ad hoc alter-
ations, to describe other flows from this class �22–24�. This
makes it possible to use the values for material constants
determined from completely independent experiments. Com-
parisons with such experiments have confirmed the model’s
validity and accuracy �21,25�. We will examine the fully rep-
resentative case of a plane-parallel shear flow over a smooth
solid surface that encounters a transition region between sub-
strates of different wettability.

II. PROBLEM FORMULATION

Consider the steady flow of an incompressible Newtonian
liquid passing over a stationary flat solid surface. The liquid
is driven over the solid by a plane-parallel shear of magni-
tude S in the far field. We consider the bulk flow to be
described by the Navier-Stokes equations

� · u = 0, �u · �u = − �p + ��2u , �1�

where u, p, �, and � are the fluid’s velocity, pressure, den-
sity, and viscosity, respectively. The boundary conditions on
a solid surface of uniform wettability, that follow from the
interface formation theory �21� are given by

�n · ��u + ��u�*� · �I − nn� +
1

2
� � = �u · �I − nn� ,

�2�

�u · n =
�s − �e

s

�
, �3�

� · ��svs� = −
�s − �e

s

�
, �4�

v�
s =

1

2
u� + � � �, vs · n = 0, �5�

� = 	���0�
s − �s� . �6�

Here � is the surface tension in the “surface phase,” i.e., a
microscopic layer of liquid adjacent to the solid surface sub-
ject to intermolecular forces from two bulk phases; �s is the
surface density �mass per unit area� of this layer and vs is the
velocity with which it is transported; n is the unit vector
normal to the solid surface pointing into the liquid; I is the

metric tensor; �I−nn� is a tensor that extracts the tangential
component of a vector, for example, u · �I−nn�=u�, where
the double line subscript denotes tangential component; �, �,
	, �, ��0�

s , and �e
s are phenomenological material constants.

The model has previously been discussed in detail �e.g.,
�21��, so that here we will only briefly recapitulate the mean-
ing of the terms. The surface tension is considered as a dy-
namic quantity related to the surface density via the equation
of state in the “surface phase” �6�, which is taken here in the
simplest linear form. The constant 	 is associated with the
inverse compressibility of the fluid while ��0�

s is the surface
density corresponding to zero surface tension. It is worth
noting that the bulk fluid is assumed to be incompressible �1�
whereas in the surface phase the actual density differs from
that in the bulk and the corresponding surface density �i.e.,
mass per unit area� can vary �4�. The reason for this “duality”
is that the bulk incompressibility is associated with the
smallness of the Mach number, i.e., it is a limitation on mac-
roscopic hydrodynamics, whereas the surface phase’s com-
pressibility is controlled by independent factors as the sur-
face phase is subject to asymmetric intermolecular forces
that are singularly strong compared to the forces involved in
macroscopic hydrodynamics.

As in Gibbs’ theory of capillarity, the surface tension it-
self may be positive or negative depending on whether the
solid is hydrophobic or hydrophilic. Gradients in surface ten-
sion influence the flow, firstly, via the tangential stress
boundary condition �2�, i.e., via the Marangoni effect, and,
secondly, in �5� by forcing the surface velocity vs, which is
parallel to the solid surface, to deviate from that generated in
the surface phase by the outer flow. It is noteworthy that, as
pointed out by Gibbs �26�, physically, the surface phase is a
thin layer of liquid adjacent to the solid surface and hence
the velocity vs, being the average velocity associated with
the mass flux in this layer, differs from the bulk velocity u
evaluated on the liquid facing side of the liquid-solid
interface.

The constants � and � characterize the response of the
interface to surface tension gradients and an external torque,
respectively; in the simplest variant of the theory both are
properties of the fluid and have no relation to the wettability
of the solid. Mass exchange between the bulk and surface
phases, caused by the possible deviation of the surface den-
sity from its equilibrium value �e

s, is accounted for in the
boundary condition for the normal component of bulk veloc-
ity �3� and in the surface mass balance equation �4�. The
parameter � is the surface tension relaxation time.

One would expect a generalized set of boundary condi-
tions to have the no-slip condition as its limiting case. For
the interface formation model this limiting case follows from
the limits � / ��L� ,U� /L→0, where L and U are character-
istic length and velocity scales of the flow, applied to Eqs.
�2�–�6�. Estimates for the phenomenological constants � and
�, obtained from experiments on dynamic wetting �25�, sug-
gest that, say, for L�10−2 cm, U�1 cm s−1, and �
�10 g cm−1 s−1 one has � / ��L��10−5 and U� /L�10−6.
Then for flows which, unlike dynamic wetting, are not asso-
ciated with infinitesimal length scales, boundary conditions
�2�–�6� to leading order in � / ��L� and U� /L, reduce to no
slip.
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Conditions �2�–�6� were derived using methods of irre-
versible thermodynamics assuming that the equilibrium sur-
face density �e

s, determined by the wettability of the solid
substrate, is a constant, i.e., for a solid surface of a uniform
wettability. This constant is related to the equilibrium contact
angle that a liquid-gas free surface would form with the solid
via the Young equation in the following way. If we assume
that the equilibrium surface tension of the solid-gas interface
is negligible, the Young equation takes the form

�sl = − �lg cos � , �7�

where �sl and �lg are the equilibrium surface tensions of the
liquid-solid and liquid-gas interfaces and � is the equilibrium
contact angle that the free surface forms with the solid. Thus,
since according to Eq. �6�, �sl=	���0�

s −�e
s� for a given liquid

the Young equation �7� allows one to express �e
s in terms of �

�see Eq. �19� below�.
In order to modify Eqs. �2�–�6� for a solid of variable

wettability we must replace, in Eqs. �2� and �5�,

�� → �� + �sFs, where Fs =
	 � �e

s

�e
s . �8�

The reaction force Fs acts on the liquid-solid interfacial layer
from the solid surface and by balancing gradients of the
equilibrium surface tension �e=���e

s�, ensures the existence
of a state of equilibrium.

Consider the equilibrium surface density of the form

�e
s =

1

2
��1e

s + �2e
s � +

1

2
��2e

s − �1e
s �tanh�x/l� , �9�

where �1e
s and �2e

s are the equilibrium surface densities in the
far field as x→−
 and x→
, respectively; l is the length of
the transition region; x is a Cartesian coordinate in the plane
of the solid surface. The equilibrium surface density in the
form of Eq. �9� allows one to investigate the role of a tran-
sition region between solids of different wettabilities and,
after taking the limit l /L→0, find what boundary conditions
for the surface variables one should use if this region is mod-
eled as a solid-solid-liquid contact line.

Finally, we will assume that the flow is plane-parallel in
the �x ,y� plane of a Cartesian coordinate system, the origin
of which is at the center of the transition region, and that it is
generated by constant shear of magnitude S in the far field,

u → Sij · r as r → 
 , �10�

where i and j are unit vectors in the x and y directions and r
is the radius vector. Equations �1�–�10� now completely
specify the problem.

It is important to emphasize that in the derivation of the
model it is assumed that on the solid-facing side of the
liquid-solid interface one has impermeability and no slip.
However, it is the velocity on the liquid-facing side of the
liquid-solid interface that is the boundary condition for the
Navier-Stokes equations �1�. In the classical no-slip condi-
tion it is assumed that there is no difference in velocity be-
tween the solid-facing and liquid-facing side of the interface,
whereas in the interface formation model, the velocity on the
liquid-facing side of the interface is determined by the inter-

action occurring in the surface phase and between the surface
phase and the bulk. As a result, one can expect effective �or
“apparent”� slip, i.e., the difference between the velocity on
the liquid-facing side of the interface and the velocity of the
solid surface, that is, in our case, u · �I−nn��0 and a non-
zero normal component of velocity �a flux in �out� of the
surface phase, i.e., u ·n�0�.

It is convenient to nondimensionalize Eqs. �1�–�10� using

U = �−1�lg, L = US−1, P = �S, �lg, ��0�
s ,

as the scales for velocities, length, pressure, surface tension,
and surface density. Then in the bulk one has

� · u = 0, Re�u · �u� = − �p + �2u , �11�

while on the surface, where we use the notation u, v, and
vs=v�

s for tangential bulk velocity, normal bulk velocity, and
tangential surface velocity, respectively,

� �u

�y
+

�v
�x
� +

1

2
�d�

dx
+

��s

�e
s

d�e
s

dx
� = �̄u , �12�

v = Q��s − �e
s� , �13�

�
d��svs�

dx
= − ��s − �e

s� , �14�

vs =
1

2
u + �̄�d�

dx
+

��s

�e
s

d�e
s

dx
� , �15�

� = ��1 − �s� , �16�

�e
s =

1

2
��̄1e

s + �̄2e
s � +

1

2
��̄2e

s − �̄1e
s �tanh�x/l̄� , �17�

and in the far field

u → 1,v → 0 as x2 + y2 → 
 . �18�

Here

Re =
��lg

2

S�3 , � = S�, �̄ =
��lg

�2S
, Q =

��0�
s �

���lg
, �̄ =

�S�2

�lg
,

l̄ =
�Sl

�lg
, � =

	��0�
s

�lg
, �̄ie

s =
�ie

s

��0�
s �i = 1,2� .

It is noteworthy that, unlike the classical Navier condition
in Eq. �12�, which can be regarded as its generalization, the
tangential stress �the first term on the left-hand side� includes
�v /�x. The deviation of �s from its equilibrium value and the
resulting adsorption �desorption� lead to v�0 via Eq. �13�.
Then, the spatial nonuniformity of this process makes
�v /�x�0, thus “switching on” this term in the tangential
stress in Eq. �12� and hence contributing to the apparent slip.

The parameter Q in Eq. �13� is the ratio of the character-
istic mass flux into �out of� the liquid-solid interface associ-
ated with the adsorption �desorption� process triggered by
the deviation of the surface density from its local equilibrium
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value and the characteristic mass flux due to convection in
the bulk, whereas �−1 characterizes the ratio of the former
and the characteristic divergence of the convective mass flux
in the surface phase. In the present context, � is simply the
product of the magnitude of shear in the far field S and the
surface-tension-relaxation time �.

Given that it is the equilibrium contact angle �, which a
liquid-gas free surface would form with a solid, that we use
as a measure of the wettability of a solid substrate, it is
convenient to eliminate �̄ie

s , which are “internal” parameters
of the model, in favor of �i using Eqs. �7� and �16� as
follows:

�̄ie
s = 1 + �−1 cos �i �i = 1,2� . �19�

Hereafter we will refer to the portion of the solid substrate
with equilibrium contact angle �1 and �2 as “solid 1” and
“solid 2,” respectively.

Following from �25�, where it was shown by analyzing
experiments on dynamic wetting that ���−1, we will further
assume that ��=1 and hence that, in terms of our non-

dimensional parameters, �̄�̄=1. The analysis of experiments
in �25� also provides estimates for the magnitude of phenom-
enological constants in the interface formation model’s equa-
tions. Using these estimates and taking ��1 g cm−3, �
�10−1–102 g cm−1 s−1, �lg�10–102 dyn cm−1, S
�103–105 s−1, and l�10−6–10−5 cm one arrives at a typical
range of values for the magnitudes of the nondimensional
groups

Re � 10−9 – 103, � � 10−6 – 10−2, �̄ � 101 – 107,

Q � 10−3 – 103, l̄ � 10−6 – 101, � � 2 – 102,

�i � �0 ° ,180 ° � �i = 1,2� .

As mentioned earlier, it is the double limit �̄−1→0, �→0
applied to Eqs. �12�–�16� that results in the no slip condition
and hence all effects associated with deviation from the clas-
sical no slip are at leading order in these parameters.

III. SOLUTION

The problem was solved numerically using the finite ele-
ment method. Figure 1 shows the streamlines of the flow for
the case where solid 1 is more hydrophilic than solid 2; the
values of the dimensionless constants are given in the figure
caption. As one can see, when the outer flow drives the fluid
from a hydrophilic to a hydrophobic zone, there appears a
normal flux from the surface phase into the bulk. It is note-
worthy that, as shown in Fig. 1, the vertical component of
bulk velocity is nonzero at y=0, whereas for the classical
Navier condition with different coefficients of sliding friction
one has v=0 at y=0 �12� and the normal component of ve-
locity away from the solid appears solely due to the distur-
bance of the tangential flow at y=0.

In Figs. 2–6 the distributions of the bulk velocity compo-
nents along the solid surface are shown for the case in which
solid 1 is more hydrophilic than solid 2. In each graph one

can see �i� a positive normal velocity and �ii� variation in
tangential velocity on the surface. The origin of the first of
these effects is relatively straightforward. When fluid par-
ticles forming the interface are driven by the outer flow to-
ward the region of lower equilibrium surface density, one has
that in the disturbed equilibrium �s�e

s, and hence, accord-
ing to Eq. �13�, v0.

Importantly, it can be seen in Fig. 1 that the flux out of the
surface phase occurs both in the hydrophilic �x�0� and hy-
drophobic �x0� regions of the solid and extends itself well
outside the transition zone. When solid 1 is more hydropho-
bic than solid 2 one observes the reverse effect, with the
normal component of velocity directed towards the surface,
corresponding to a flux into the surface phase. Once again
this occurs on both sides of the transition region.

In order to understand the distribution of the tangential
component of the bulk velocity on the surface we consider
the terms on the left-hand side of the generalized Navier

−0.15 −0.05 0.05 0.15
0

0.05

0.1

0.15

x

y

ψ=0

ψ=0.008

ψ=0.016

ψ=0.024

ψ=0.032

ψ=−0.002

FIG. 1. Streamlines of flow over a chemically patterned surface
in which values of the streamfunction � are given. Parameter values

Re=0.01, �=0.01, �̄=10, Q=100, l̄=0.1, �=10, �1=10°, and �2

=100°.

FIG. 2. Variation of the “generators” of slip �the terms on the
left-hand side of the generalized Navier condition �12�� in response
to a variation in the solid surface wettability. In curve 1, T
= ��u /�y+�v /�x−1� while in curve 2, T= �d� /dx
+ ���s /�e

s�d�e
s /dx� /2. Results are obtained for parameter values

Re=0.01, �=0.01, �̄=100, Q=1, l̄=0.1, �=20, �1=10°, �2=100°.
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condition �12�, which determine u�x ,0�. For a plane-parallel
shear flow over a homogeneous surface, i.e., far away from
the wettability transition region, there is no deviation of the
surface density from its equilibrium value ��s=�e

s� and hence
no desorption from �or adsorption into� the liquid-solid inter-
face �v=0�. This is an obvious solution of Eqs. �11�–�18�. In
dimensionless variables, the tangential stress on the surface
�u /�y+�v /�x has magnitude 1 ��u /�y=1, �v /�x=0�.

As one approaches the transition region, the situation
changes. Curve 1 in Fig. 2 shows the distribution of the
deviation of the tangential stress �the first term on the left-
hand side in Eq. �12�� from the value 1 across this region.
Importantly, there are now contributions to the tangential
stress from both �u /�y and �v /�x since the latter becomes
nonzero due to variation in the normal velocity along the
surface as a result of the spatially nonuniform desorption
�adsorption� process caused by the deviation of �s from its
local equilibrium value. As discussed earlier, this effect could
follow neither from the standard Navier condition nor from
any of its generalizations if the interface formation process
and the associated mass exchange between the interface and
the bulk are not taken into account.

The other factors that, according to Eq. �12�, lead to slip
on the liquid-solid interface behave as follows. As mentioned
in the previous section, in equilibrium the surface force
����s /�e

s�d�e
s /dx� /2, and the surface tension gradient

�d� /dx� /2, balance each other to ensure that there is no per-
petual motion. However, when a shear flow in the far field is
imposed, it disturbs the surface phase, and the above two
terms are no longer in balance since they obviously depend
differently on the variable surface density �s. The deviation
of the second term on the left-hand side of Eq. �12� from

(a)

(b)

(c)

FIG. 3. Distribution of u�x ,0� and v�x ,0� for different � and �̄.

Curves 1–5 correspond to �=0.01, �̄=500; �=0.01, �̄=200; �

=0.01, �̄=100; �=0.02, �̄=100; �=0.05, �̄=100, respectively; for

all curves Re=0.01, Q=1, l̄=0.1, �=20, �1=10°, and �2=100°.

(a)

(b)

FIG. 4. Dependence of u�x ,0� and v�x ,0� on Re, Q, and �.
Curve 2 corresponds to Re=0.01, Q=1, �=20; 1: �=50; 3 �indis-
tinguishable within the graphical accuracy�: Re=10; 4: Q=2.

Parameters �=0.01, �̄=100, l̄=0.1, �1=10°, �2=100° for all curves.
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zero is shown as curve 2 in Fig. 2. One can see that it is the
variation in this second term in Eq. �12� that dominates and
hence it is the imbalance between the surface tension gradi-
ent and the tangential surface force caused by shear flow that
is mainly responsible for a variation in slip on the surface as
its wettability changes. The corresponding right-hand side of
Eq. �12� and the normal velocity for these parameter values
are shown by curve 3 of Fig. 3.

Figure 3 illustrates the effect that the size of the param-

eters � and �̄ have on the solution. As was mentioned, all
effects associated with deviations from no slip, most clearly

the nonzero normal velocity, are proportional to � and �̄−1,
and the results shown in the figure support this conclusion.
Noticeably, the normal velocity on the surface appears to be
symmetric about the center of the transition region, where it
achieves its maximum value. The tangential velocity seems
to be antisymmetric about the origin, with a decrease in slip
on solid 1 and increase in solid 2.

Figure 4 shows the effect on the solution of the param-
eters Re, Q, and �. Curves 2 and 3, which are almost indis-
tinguishable, demonstrate that the Reynolds number has al-
most no effect on the dynamics of the surface. The local

Reynolds number near the surface is always small due to the
smallness of velocities in the vicinity of the solid surface
even when the value associated with the global flow is rela-
tively large, and one should indeed expect inertial effects to
have little impact on dynamics in the surface phase.

The parameter Q determines the degree of mass exchange
between bulk and surface phase �13�. Curves 2 and 4 in Fig.
4 show that the greater its value, the more pronounced the
effect will be. By varying � one can see that the effect in-
creases with the compressibility of the fluid.

Figure 5 shows that for a smaller transition region one has
a sharper effect. In all cases the disturbance, i.e., the nonzero
normal component of the bulk velocity and variation in slip,
runs well outside the region of varying wettability. The re-
sults suggest that if instead of a region, one treated the tran-
sition in wettability as a solid-solid-liquid contact line, then
the disturbance to the bulk flow would be sharper than the
effect associated with a finite transition region but would still
occur over a finite region of the interface.

It is interesting to note that although the shape of the
curves in Fig. 5 differs, the integral of the normal velocity,
i.e., the total flux out of the surface phase per unit time

(a)

(b)

FIG. 5. Velocity on the surface for different widths of transition

region. Curves 1–3 correspond to l̄=1, l̄=0.1, and l̄=0.01, respec-

tively; for all curves Re=0.01, �=0.01, �̄=100, Q=1, �=20, �1

=10°, and �2=100°.

(a)

(b)

FIG. 6. Velocity on the surface for different solid-solid pairs.
Curve 1: �1=10°, �2=60°; 2: �1=60°, �2=110°; 3: �1=10°, �2

=110°, respectively. For all curves Re=0.01, �=0.01, �̄=100, Q

=1, l̄=0.1, �=20.
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J = 	
−





v dx , �20�

which we consider as a measure of the effect that a patterned
surface has on an adjacent flow, remains unchanged. The
value of J is a sensible choice of measure as we have seen
that it is the normal component of velocity that causes the
noticeable deviation from plane-parallel shear flow.

Given that the change in solid does indeed alter the flow
of an adjacent liquid, consider how the magnitude of the
effect is dependent on the choice of solids. This can be illus-
trated by looking at three different solids characterized by
contact angles of 10°, 60°, and 110° that a free surface would
form with them. Figure 6 shows the velocity components for
three different combinations of solids for the case where the
first solid is more hydrophilic.

The results suggest that the normal flux per unit time is
proportional to the difference cos �1−cos �2, which explains
the ordering in Fig. 6, where we can see the case 10°
→60° gives a far smaller effect than 60° →110° despite the
difference in contact angles being the same. The numerical
analysis of the problem made it possible to advance and then
verify the following approximate formula for J:

J =
�Q

2�̄�
�cos �1 − cos �2� . �21�

This formula, which very accurately represents the numerical
data over a wide range of parameter values, has been ob-
tained as follows. The proportionality of the flux between the
surface and bulk phases to the cosines of the contact angle is
in fact what one should expect given that according to Eqs.
�6� and �7�, cos � is a linear function of the equilibrium sur-
face density, and it is the difference �̄1e

s − �̄2e
s that determines

the flux. This conjecture of the linear dependence of J on
cos �1−cos �2 is the only nontrivial step in obtaining Eq.
�21� and it has to be verified numerically. We also have to
find the coefficient of proportionality in this dependence in
terms of the dimensionless parameters of the problem. In
order to do this, we used the following procedure. For the
fixed values of �1 and �2, we chose a base state in terms of
the remaining parameters and then varied one of these pa-
rameters away from its base state to consider the effect this
variation produces on J. After repeating this operation for all
parameters we arrive at Eq. �21�, which now has to be veri-
fied by independently varying all dimensionless parameters,
including �1 and �2. The accuracy with which this equation
represents J is illustrated in Fig. 7.

Order of magnitude arguments for the phenomenological
parameters and the analysis of experiments on dynamic wet-
ting �25� suggest that ��� /h, where h is the thickness of
the interfacial layer �modeled here as an “interface” of zero
thickness�. Using this estimate, for the dimensional flux per
unit time out of the surface phase in a liquid-solid-solid sys-
tem one has

Jdim �
Sh�lg

�	
�cos �1 − cos �2� . �22�

Given that h is typically very small �a few nm for simple
fluids �27��, the above estimate highlights the subtle nature
of the effects that we have described.

IV. CONCLUSION

As was shown, the interface formation model applied to
the flow over a solid surface of variable wettability allows
one to describe the main features of this flow observed in
molecular dynamics simulations, most notably the nonzero
component of the bulk velocity normal to the solid surface. A
natural link between “wettability” interpreted in terms of the
concept of the “contact angle” featuring in the spreading of
liquids on solid surfaces and a viscous flow over chemically
patterned solids with no free surface present has been estab-
lished. Importantly, the interface formation model, which is
discussed in further detail in �28�, deals with these phenom-
ena entirely within the approach of continuum mechanics
with no artificial inclusion of intermolecular forces in its
framework. An interesting feature that follows from the re-
sults is that slip, i.e., the difference between the tangential
component of the fluid’s velocity and the corresponding
component of the velocity of the solid surface, results prima-
rily from the disturbance of the force balance in the “surface
phase” and not from the tangential stress, as follows from the
standard Navier condition.
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FIG. 7. Dependence of flux on parameters Q, �, �̄, and �. Pa-
rameters are varied around a base state, the results of which are

represented by vertical crosses, of �̄=100, Q=1, �=0.01, �=20.

Then, diamonds: �=0.02; squares: Q=2; triangles: �̄=200; diago-
nal crosses: �=40. For all curves �1=90° while �2 is varied, and
Re=0.01. Curves 1–3 represent the predicted flux given by Eq.
�21�.
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